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SUMMARY

The present paper is devoted to the study of design optimization strategies in the particular framework
of complex computational �uid dynamics. Genetic algorithms are chosen as the optimization strategy,
thanks to their robustness and �exibility. Two ways are explored to improve the behaviour of genetic
algorithms in order to increase the e�ciency of the search. First, approximated pre-evaluations based
on arti�cial neural networks are used to bene�t from the knowledge acquired from the problem and
to reduce the number of expensive evaluations by the �ow solver required at each generation. Then,
a hybridization technique is proposed for the �nal local search, which is performed by a deterministic
method. These approaches are validated and applied on two- and three-dimensional problems, involving
Reynolds-averaged Navier–Stokes computations with near-wall turbulence modeling. Copyright ? 2004
John Wiley & Sons, Ltd.
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1. INTRODUCTION

For several years, �ow computations have been taken into account by engineers to improve
the designs, for example in aerodynamics or hydrodynamics. Modi�cations were performed
manually �rst, and then using automated tools to lead the search towards optimality. Thanks
to the progress in computational �uid dynamics (CFD) and computers hardware during the
last few years, the automated design optimization procedures are now expected to solve prob-
lems including complicated �ows and realistic con�gurations. Consequently, the physical and
geometrical con�gurations encountered in industrial applications make necessary the recourse
to viscous �ow solvers based on sophisticated turbulence modelling, dealing with realistic
geometries. In this framework, the naive use of a standardized toolbox optimization software

∗Correspondence to: M. Visonneau, Laboratoire de M�ecanique des Fluides, CNRS UMR 6598, Ecole Centrale de
Nantes, 1, Rue de la Noe, F-44321 Nantes, France.

†E-mail: michel.visonneau@ec-nantes.fr

Contract=grant sponsor: Scienti�c Committee of CINES; contract=grant number dmn 2050
Contract=grant sponsor: IDRIS; contract=grant number 1308

Received 10 April 2003
Copyright ? 2004 John Wiley & Sons, Ltd. Revised 22 October 2003



1258 R. DUVIGNEAU AND M. VISONNEAU

connected to a �ow solver and an automated grid generator cannot be a sensible strategy,
since the peculiarities of the �ow solver should be taken into account. Otherwise, some limi-
tations may be quickly encountered. For instance, the constraints on the grid (y+ =O(1) near
the wall) linked to the use of near-wall turbulence models will have serious consequences
on the mesh update procedure. If a particular strategy taking into account the high stretching
of the volumes near the wall is not included, the mesh update will fail. This observation
explains why the recourse to an automatic grid generation software may not be wise in such
a context. Another reason is related to the mandatory use of parallelization strategies, such
as domain decomposition, as soon as three-dimensional problems are considered. The mesh
update, as well as the parameterization of the shape, should be adapted to this multi-block
partition to work within each block independently and to send information for updating the
overall domain. Otherwise, the parallelization becomes useless. Concerning the optimization
methods, the high computational costs implied by three-dimensional calculations, as well as
the possible occurrence of numerical noise of various origins during the evaluations, should be
taken into account for the choice of an optimization strategy. Finally, if di�erently connected
software are employed in the design loop, some practical di�culties may arise, when distant
computers are involved in the optimization process. All these remarks justify the development
of an optimization procedure, in which all numerical tools are adapted to the �ow solver and
integrated into a single code.
In the past, considerable research e�orts were focused on the development of techniques

for evaluating the sensitivity of the cost function with respect to the shape, in order to use
gradient-based optimization methods [1, 2]. In that way, the coupling between the optimizer
and the �ow solver is strong and a low number of evaluations is required to reach an optimal
design. This approach was successful and cheap when rather simple �ows were considered,
but many limitations were noted when this approach was applied to more complex and re-
alistic problems. First, the evaluation of the derivatives of the cost function with respect to
the design variables is cumbersome when sophisticated �ow solvers and highly non-linear
turbulence models are considered [3]. Then, the presence of a numerical noise related to
the complexity of the �ow was reported [4–6], which generates spurious local minima and
inhibits the capabilities of gradient-based strategies. Moreover, using such methods, a local
optimization is performed, involving only one criterion, which is not satisfactory in an indus-
trial framework. Lastly, one may think that the di�culty in evaluating the derivatives when
di�erent physical �elds of applications are coupled, makes quite unlikely the development of
gradient-based multi-disciplinary optimization strategies.
To overcome these limitations, some authors proposed the employment of more powerful

optimization strategies, such as genetic algorithms (GAs). These stochastic methods [7] are
known for their robustness, even when the cost function is noisy or discontinuous, and their
ability to perform global optimization. Moreover, they have the capability to solve multi-
criteria problems. However, GAs do not use derivative information to lead the search. There-
fore, a weak coupling between the optimizer and the �ow solver is observed, yielding an
expensive strategy which requires a high number of evaluations. If this approach was suc-
cessful for two-dimensional inviscid �ows, its use for three-dimensional viscous problems
cannot be advised when industrial applications are considered.
Therefore, the present paper is devoted to the study of acceleration techniques for GAs,

in the particular framework of complex CFD applications. Two approaches are considered
here. First, arti�cial neural networks (ANNs) are employed to bene�t from the �ow com-
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putations performed during the design process and to provide more informations to the
GA in order to prevent it from performing numerous evaluations. Typically, ANNs are ex-
pected to approximate the cost function in a pre-evaluation procedure in order to reduce
the number of expensive evaluations by the �ow solver required by GAs. Then, a sec-
ond way is explored, which concerns the use of a deterministic method to perform quickly
the �nal local search in order to remedy the poor local convergence properties of GAs.
Such a hybrid methodology is expected to provide successively an e�cient global and lo-
cal search, taking the best part of both methods without losing their fundamental advan-
tages. A similar approach was reported in Reference [8] employing classical GAs �rst,
and then a conjugate gradient method, the derivatives being evaluated using ANNs
approximations.
These approaches are validated and tested on two- and three-dimensional problems with

the help of the ISIS �ow solver developed in our laboratory. This �ow solver deals with the
incompressible Reynolds-averaged Navier–Stokes (RANS) equations on unstructured grids,
the modelization of the turbulence being achieved by near-wall low- Reynolds number
models.
The shape of a two-dimensional airfoil is �rst optimized to validate the above-mentioned

procedures. Then, the three-dimensional design of a wing is considered, to show the capability
of the resulting approach to deal with real-life problems.

2. FLOW SOLVER

The multi-purpose �ow solver ISIS, developed in our laboratory, is implemented in the op-
timization procedure, providing the capability to solve realistic problems. Pseudo-steady in-
compressible RANS equations are solved with a strongly conservative formulation. For each
control volume, the momentum and mass conservation laws are written as

@
@�

∫
V
�Ui dV +

∫
S
�Ui(U −Um):n dS =

∫
S
(TijIj − pIi):n dS +

∫
V
�gi dV i=1; 2; 3 (1)

∫
S
U :n dS =0 (2)

Um representing the velocity of the moving faces S of the control volume V; Tij the stress
tensor, gi are the components of the gravity force and n is the normal to the control vol-
ume faces. Ij is a vector whose components vanish, except for the component j which
is equal to unity. The discretization scheme is based on a �nite-volume method, general-
ized to unstructured meshes composed of arbitrary control volume shapes. The �ow vari-
ables are stored at the centre of the control volumes; surface and volume integrals being
evaluated by second-order accurate approximations. The pressure–velocity coupling is per-
formed by a SIMPLE-like algorithm. Several near-wall low- Reynolds number turbulence
models, ranging from one-equation Spalart–Allmaras [9] model, two-equation k–! closures
[10], to a full Reynolds stress transport Rij–! model [11] are implemented in the �ow
solver.
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3. PARAMETERIZATION AND MESH UPDATE

A mesh deformation tool is developed in order to update the mesh during the design process,
since the grid should move in accordance with the boundaries deformation. In order to treat
realistic geometries, hybrid grids are usually employed, with a structured mesh near the wall
boundaries and an unstructured mesh in the outer domain where lower gradients are usually
observed. Because of the complexity of such grids, the generation of each new mesh cannot
be performed automatically from scratch by a standard software, particularly when a multi-
block decomposition is considered. Consequently, a deformation of the initial grid is preferred
to generate a new mesh in accordance with the current shape.
For the two-dimensional cases, a linear and torsional spring analogy is employed to control

the deformation of the grid [12]. The parameterization is realized by a B-spline curve, ensuring
the smoothness of the shapes and reducing the number of the design variables. The linear
spring analogy is commonly employed to deform the mesh in design strategies. A linear
spring is attached along each edge connecting two nodes i and j, with a sti�ness inversely
proportional to the square of the length lij of the edge:

kij ∝ 1
l2ij

(3)

The displacement of the nodes q is the solution of a linear system, which represents the
quasi-static equilibrium of the discrete mechanical problem

Klinq=0; q= �q on boundaries (4)

where Klin is the sti�ness matrix and �q the displacement of the nodes imposed on the bound-
aries. This method prevents two nodes from colliding, since in that case the sti�ness tends
towards an in�nite value according to (3), but it does not prevent a node from colliding with
the edge that faces it. This behaviour is particularly damaging for viscous calculations, since
the high stretching of the control volumes is unavoidable in the boundary layer and may lead
to the failure of the deformation process by generating negative volumes. Therefore, special
treatments are usually applied near the wall, involving geometric considerations [1]. In this
paper, another approach which associates a torsional spring analogy with a linear one [12] is
employed. The method consists in attaching to each node i of each volume a torsional spring
with a sti�ness de�ned by

Cijki ∝
1

sin2(�ijki )
(5)

where �ijki is the angle ˆjik at the node i of the volume. System (4) is then updated in

(Klin + Ktors)q=0; q= �q on boundaries (6)

using an energy equivalence to express the e�ects of the torsional springs in terms of dis-
placements of the nodes. The torsional springs prevent the volumes from interpenetrating each
other. The association of linear and torsional springs provides a powerful mesh deformation
tool, which maintains the grid quality near the wall even for high deformations.
For three-dimensional con�gurations, the implementation of the previous strategy is tedious

in practice, because it is di�cult to de�ne precisely the characteristics of the torsional springs.
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Therefore, a free form deformation (FFD) technique [13] is used to control the shape pertur-
bations during the design process. It consists in �rst embedding the object to be deformed in
a box, then modifying the metrics of the space in the box and the object inside, by deforming
the box, rather than modifying the object itself. In this way, the shape of the object can be
modi�ed without even identifying its nature. Actually, a local co-ordinate system is attached
on a parallelepipedic volume including the object to be deformed. The co-ordinates of any
point P in this reference system are

P= �e1 + �e2 + �e3 (7)

where e1; e2 and e3 are vectors of unit length, parallel to the leading directions of the
parallelepipedic volume. A mapping function is then applied to the space inside the volume,
by the use of a trivariate B-spline product. The new position PFFD of the previous point P is
provided by the algebraic relation

PFFD =
∑
i;j;k
Ni(�)Nj(�)Nk(�)P

ijk
BS (8)

where Ni; Nj and Nk are the B-spline basis functions and P
ijk
BS are the cartesian co-ordinates of

the control points. By moving some of these control points, the space inside the parallelepi-
pedic volume is perturbed, yielding a smooth deformation of the shape inside. This approach
provides an easy-to-use manipulation tool, since no curvilinear representation of the object is
required.

4. CLASSICAL GENETIC ALGORITHMS

GAs belong to the evolutionary methods of optimization, which mimic the natural laws of
evolution to improve the performance of a set of individuals. They are based on the Darwin
principle of ‘the survival of the �ttest’. For the present approach, classical GA methods are
implemented [7]. Once a binary encoding representation of the design variables is chosen, a
population of nind individuals is randomly generated. The performance of the whole population
is evaluated, requiring nind simulations. Then, the population is evoluting through genetic
operators. For the selection operator, whose purpose is to eliminate the worst individuals, a
tournament strategy is chosen, since its pressure selection is lower than the classic roulette-
wheel operator which may cause premature convergence. In practice, it consists in picking
randomly two individuals and comparing their �tness. A copy of the best individual is selected
for the new population, while both individuals are put back in the current population. The
process is repeated nind times to keep unchanged the population size. Then, the goal of the
crossover operator is to exploit and develop the capacity of the new population by exchanging
some characteristics between some individuals. The individuals are mated randomly and a one-
point crossover is performed, with a probability pc = o(1), by swapping a part of the strings
of two parents to give two children. During this operation, new individuals are generated,
but only based on existing strings. Finally, the mutation operator is applied to increase the
diversity by permuting the value of some bits, with the probability pm � o(1). Thus, new
individuals are created by exploring the design space. The process goes on evaluating the
performance of the new generation of individuals.
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5. PRE-EVALUATIONS USING ARTIFICIAL NEURAL NETWORKS

5.1. Pre-evaluations process

The GAs described below are known for their robustness and their ability to perform a
global optimization. Moreover, they are less sensitive to the numerical noise than gradient-
based approaches. However, the search performed is not really e�cient, because nind de-
sign points should be evaluated at each generation regardless the informations already ac-
quired on the functional. Moreover, among these new trial points, some low �tted indi-
viduals will be eliminated as early as the selection step and their expensive evaluation by
the �ow solver may be considered as useless. Furthermore, it should be underlined that
accurate evaluations are not required by GAs, which only need to know the ranging of
individuals.
Considering all these remarks, a pre-evaluation procedure based on an approximated model

of the cost function is introduced at each generation. By replacing some expensive evaluations
performed by the �ow solver by cheap approximated evaluations, the knowledge acquired from
the problem is used to reduce the computational costs and some useless accurate evaluations
are avoided, as proposed by Giotis and Giannakoglou [14, 15].
During the �rst generations, a classical GA is running, all individuals evaluated at each

generation being stored in a database. Then, from the generation kpe to the end of the op-
timization process, one modi�es the evaluation step at the beginning of each generation in
the following way. The nind individuals of the current population are �rst pre-evaluated using
an approximated functional. This approximation is built thanks to the database entries. These
evaluations are called inexact pre-evaluations and provide a good estimate of the �tness of the
individuals. Then, some individuals are chosen in the population to be evaluated by the �ow
solver. Since the high �tted individuals will be probably selected to generate the o�springs,
one would like to know more accurately their �tness. Thus, the �nind most interesting individ-
uals, according to the inexact pre-evaluations, are exactly evaluated by the �ow solver. These
evaluations are included in the database, updating it in interesting areas. Using this update
strategy, the database is continuously updated during the optimization process and the inexact
pre-evaluations become increasingly accurate, since the database entries are concentrated in
the most promising areas, as most new optimization points. Once the evaluations are done,
the genetic operators act as usual, according to the exact, if provided, or inexact evaluations
of the individuals. The algorithm is summarized in the following lines:

1. Initialization
2. Evaluation of the generation k:
if k¡kpe then
• nind evaluations by the �ow solver
• storage of nind points in the database
if k¿kpe then
• nind inexact pre-evaluations according to the database
• choice of the �nind best individuals according to the pre-evaluations
• �nind evaluations by the �ow solver
• storage of �nind points in the database

3. Selection
4. Crossover
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5. Mutation
6. k← k + 1 go to step 2

One must underline that this strategy is totally di�erent from the method consisting in building
�rst a global approximation of the cost function according to some evaluations, and then using
only this approximation to perform the optimization cycles. Actually, in such an approach the
�ow solver is de�nitely forgotten after the construction of the approximation and numerous
a priori evaluations must be performed in the whole design space to obtain an accurate
global approximation. For the present strategy, a strong link is maintained between the �ow
solver, the representation process and the optimizer. Thanks to this coupling, evaluations are
performed only in promising areas of the design space, which leads to a continuously updated
and more accurate representation.

5.2. Arti�cial neural networks

The representation of the cost function used in the pre-evaluation process should be able to
build a non-linear functional employing a low number of already known points. This is the
reason why ANNs are preferred to classical polynomial representations. Di�erent structures of
ANNs exist and may be considered for these applications. The most commonly used ANNs
are the multilayer perceptrons (MPs). They are composed of some layers of some neurones,
the �rst layer having as many neurones as the number of design variables. The number of
neurones on the last layer is equal to the number of objective functions. All the neurones
are connected to the neurones of the previous and next layers. To evaluate the output value
of MPs at the point x∈Rn, the design variables are considered as input signal, which is
propagating through the network according to the connections !ij between each couple of
neurones Ni and Nj, up to the output layer. The MPs are characterized by the connections
!ij. Consequently, a �rst step, called training, consists in determining adequate values for
these connections. For the MPs, the training is performed by minimizing the evaluation errors
of the ANN for the known points of the database entries. This stage is crucial and sometimes
tedious, since this optimization exercise involves a large number of variables. It is usually
performed through gradient-based methods and may su�er from local minimization, resulting
in a weak training which provides a poor approximation. Moreover, the results may depend
strongly on the number of layers and neurones, which is a real disadvantage for the present
application, since the training should be performed automatically.
Therefore, the radial basis functions (RBFs) networks, which are in fact particular MPs, are

adopted. They are constituted by only three layers, the intermediate layer counting as many
neurones as the number of database entries nex. A representation is given in Figure 1. For
each neurone Ni of this layer, a vector Ci, called the RBFs centre, is associated and has the
value of the ith database entry

Ci= xi; i=1; : : : ; nex (9)

It is necessary now to evaluate the ANNs output value for the input signal x. For each
neurone Ni of the intermediate layer, the input signal is the distance between x and the RBFs
centre Ci:

Ei= ‖x − Ci‖2 (10)
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Figure 1. Structure of an RBF network.

The output value of the neurone is a non-linear function of the input signal given by

Si=fRBF(Ei; e) (11)

where e is an attenuation coe�cient. Several functions may be considered [16]. For this study,
the following expression is used:

fRBF(u; r)= exp
(
−
(u
e

)2)
(12)

The attenuation coe�cient rules the domain of in�uence of each radial basis function. Finally,
the ANNs output value is obtained through the linear relation

S(x)=
nex∑
i=1
!iSi (13)

where !i is the value of the connection between the neurone Ni of the intermediate layer and
the output layer.
For the training of the RBFs network, only the connections !i between the intermediate

layer and the output layer are taken in consideration. An interpolating condition for the points
of the database, whose values are yt; t=1; : : : ; nex, is written by

yt =
nex∑
i=1
!iSi; t=1; : : : ; nex (14)

Consequently, the training just consists in solving the previous linear interpolating system to
determine the adequate weights !i. Contrary to classical MPs, no weak training is expected.
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It could be shown that this system is invertible for several functions fRBF, providing that the
entries of the database are distinct.

5.3. Validation

Before checking the capabilities of the current approach to accelerate the optimization calcu-
lations, some exercises are performed in order to validate the method and determine the best
set of parameters. Indeed, some questions still remain open. First, the size of the database
used to train the ANNs should be determined. Actually, the whole database may not be useful
during the training process, since the furthest points of the database may have a bad in�uence
when evaluating a precise individual. Therefore, local databases may be employed to train
as many ANNs as the number of individuals. The number of entries included in the local
databases should be also determined. If it is too large, useless points may be included. If it
is too narrow, the approximation may be poor. Then, the second parameter which has to be
determined is the number of generations, for which all evaluations are performed exactly at
the beginning. If the pre-evaluation procedure begins too early, the database will be too sparse
in order ANNs to provide accurate enough informations. Finally, an adequate coe�cient of
attenuation should be determined. The sensitivity of the method with respect to these three
parameters has to be explored.
The design optimization of an airfoil is considered as exercise to give answers to the

previous questions. The goal is the increase of the lift at the incidence of 5◦ for a Reynolds
number Re=106. A hybrid mesh of about 7000 nodes is employed, with a structured grid of
200× 21 nodes around the airfoil and a triangular grid further, initially built around the NACA
0012 airfoil. The turbulence modelling is achieved by the near-wall Spalart–Allmaras model.
The shape is parameterized by two Bezier curves, six control points being moved vertically
during the optimization. For the genetic algorithm, the crossover and mutation probabilities
are pc = 0:95 and pm =0:1, the population counts 20 individuals with a coding length of
36. High probability values are used to promote the creation of new individuals, since the
population size is quite small. First, the in�uence of the size of the local databases is studied
for di�erent attenuation coe�cients. For this purpose, one supposes that until generation 5, all
the evaluations are performed exactly by the �ow solver and stored in the database. Then, for
all the individuals of the sixth generation, a comparison between the inexact pre-evaluations
and the exact evaluations is done. For each individual, an ANN is trained using a local
database, including the �ve to 100 nearest entries, the last case corresponding actually to the
full database. For each case, di�erent values of the attenuation coe�cient are also tested.
Figures 2 and 3 show the average and maximum error for these tests. One can observe
that neural approximations based only on �ve entries are poor. An increase in the number
of database entries for the training leads to a reduction of the error. When the attenuation
coe�cient is too high and a large local database is used, the ANNs approximations become
very bad. This phenomenon is due to the presence of furthest points in the local databases,
whose in�uence is not neglected because of the high attenuation value. When the attenuation
coe�cient is low, the furthest points have less in�uence on the results and large local databases
may be used with good results. However, when it is too low, some design points are poorly
�tted by ANNs, since they are too far away from points in the local databases, particularly
when the databases count a small number of entries. Finally, one can see that the results
obtained using 10–20 entries are similar and satisfactory for a large domain of attenuation
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values, which may be easily found by some a priori experiments. This conclusion is in
agreement with Giannakoglou and Giotis’ results [15], which are usually advising the use of
such small local databases.
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To study the in�uence of the last parameter, the same exercise is performed, including 10
entries in the local databases for the training and an attenuation coe�cient e=1. The choice
of these values are justi�ed by the previous studies. The comparison between the inexact
evaluations and the evaluations by the �ow solver are carried out for di�erent generations.
For all cases, it is supposed that the individuals at the previous generations were exactly
evaluated. The results are presented in Figure 4. From the third generation, quite accurate
neural approximations are observed, since the average error is less than 1 per cent. Even if
the maximum error is higher, ANNs are able to provide the correct hierarchy between the
individuals. This is illustrated by Figure 5 which shows a comparison of the cost function and
ANNs values for all individuals of the �fth generation. For this generation, some individuals
are not accurately evaluated by ANNs, but the hierarchy of individuals in the population is
provided satisfactorily. Because of the role of the ANNs in the pre-evaluation process, this is
only the hierarchy which is expected from ANNs and not an accurate evaluation. For the next
generations, the average error becomes lower and lower, thanks to the update of the database,
even when the gaps between the individuals are reduced. Sometimes, the error is larger for one
individual, since it is far away from the database entries due to the random mutation operator.
Finally, this satisfactory behaviour makes possible an early use of this pre-evaluation proce-
dure in the optimization process, which leads to a strong reduction in the number of exact
evaluations.

5.4. Application to two-dimensional airfoil optimization

This acceleration strategy is �nally applied to the optimization of a two-dimensional airfoil
in order to study the in�uence of the population rate � exactly evaluated at each generation
by the �ow solver.
The optimization problem consists in increasing the lift coe�cient Cl, for a Reynolds num-

ber Re=106 and an incidence of 5◦. Moreover, the drag coe�cient Cd should not exceed a
reference drag coe�cient Cdref computed for the NACA 0012. Thus, the cost function to be
maximized is

f=Cl−max(O;Cd − Cdref ) (15)

The mesh and the turbulence model employed are kept unchanged with respect to the previ-
ous computations. The shape is parameterized by two Bezier curves, whose 10 control points
are moved vertically during the design process. For the GAs, a population of 30 individu-
als evoluting during 30 generations is used, with elitism. The probability of crossover and
mutation are, respectively, pc = 0:95 and pm =0:02, for a coding length of 76. The inexact
pre-evaluations procedure begins as early as the second generation. Ten entries are employed
to train the local ANNs, with an attenuation factor of value 10.
A �rst calculation is performed for which the whole population is exactly evaluated, cor-

responding to the case �=1. Then, a decreasing sequence of values for � is tested. In
Figure 6, a comparison of the evolutions of the cost function for the best individual of each
generation with respect to the generation number is shown. One may observe that all com-
putations reach the same level, except the case �=0:03, for which the number of exact
evaluations per generation is too low to ensure an adequate update of the database. In this
case, the ANNs pre-evaluations are not accurate enough to provide useful informations to
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Figure 5. Error versus the individuals at generation 5.

GAs. Some oscillations may be noticed for the cases �=0:03 and 0.1, underlining the poor
pre-evaluations provided to GAs. However, for the last case, GAs are robust enough to
�nd the best combinations of genes, even when poor informations are sometimes used. The
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Figure 7. Evolution of the cost function versus CPU time.

acceleration e�ect is depicted in Figure 7, which provides the evolution of the cost function
with respect to CPU time. The computations are performed using one SGI R10000 processor.
For an advisable value �=0:2, a reduction ratio of value 5 for the CPU time is obtained.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 44:1257–1278



1270 R. DUVIGNEAU AND M. VISONNEAU

GA + ANN (20%)
GA

Figure 8. Final shapes for �=1 and 0.2.

The �nal shapes for the cases �=1 and 0.2 are shown in Figure 8. One may observe that
they are very close to each other, although small gaps exist, due to a lack of local search.
It should be underlined that the shape found by using inexact pre-evaluations is slightly
better than the one determined with exact evaluations. Therefore, no lack of e�ciency is
observed.

6. HYBRIDIZATION

6.1. Method

Although the previous approach does not modify the nature of GAs, one may try now
to substitute a more e�cient algorithm to GAs for the �nal local search. Indeed, GAs
have a poor local convergence rate, although they have the capability to determine quickly
the most interesting areas of the design space. On the contrary, deterministic methods per-
form only local optimizations, but have a higher local convergence rate. Therefore, the hy-
brid method consists in using GAs to determine a good starting point for a deterministic
algorithm.
In a �rst step, GAs are running as usually, during several generations. The previous accel-

eration approach may be used during this step, as well. A criterion is introduced to evaluate
when the most interesting area is determined and GAs should be stopped. This criterion has a
crucial in�uence. If it is too strict, too many GAs calculations are performed and no real ac-
celeration e�ect is observed. If it is too tolerant, the starting point of the deterministic method
may be too far away from the absolute minimum and may yield only a local optimum. In
practice, GAs are stopped when the population rate �hyb is included in a sphere of radius �hyb
centred on the best individual.
Then, the second step begins by introducing a deterministic approach. A derivative-free

trust-region method based on linear or quadratic interpolation [17] is used. A set of points is
taken from the database to build a �rst interpolation model. Then, at each iteration, the furthest
point from the best one is replaced by the minimum of the model found in the trust region,
updating consequently the model. Only few iterations are expected to �nd the minimum of
the cost function.

6.2. Application to two-dimensional airfoil optimization

The previous optimization exercise, including inexact pre-evaluations based on �=0:2, is
chosen to validate the hybridization technique and to determine the in�uence of the
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stopping criterion. The population rate is �xed to �hyb = 0:66, since some individuals are
always far away from the remaining population due to the random mutation operator. Four
radii are tested �hyb = 0:1875, 0.225, 0.375 and 0.625, these dimensionless values being re-
lated to the largest variation domain of the design variables. Using these parameters, GAs
are stopped, respectively, at generations 24, 10, 5 and 2. The evolution of the cost func-
tion is presented in Figure 9. As expected, the choice of the radius is crucial. For an ad-
equate value �hyb = 0:225, the computational time is divided by 2. If the CPU time for
classical GAs is considered as reference, the use of inexact pre-evaluations and hybridiza-
tion provides a reduction ratio of 10. However, when the stopping criterion is too strict,
a poor acceleration is observed, even if the performance of the �nal shape is slightly im-
proved. When it is too tolerant, the minimum is not reached in a few iterations. When
looking at the �nal shapes, one may underline that the deterministic method starting from
the NACA 0012 airfoil does not reach the optimal shape (Figure 10). The shape obtained
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GA
GA + ANN (20%) + hybrid (gen. 10)

Figure 11. Final shapes for GAs and hybrid method.

with the inexact pre-evaluations and hybridization technique (Figure 11) is very close to
the one found with only ANNs acceleration (Figure 8), its performance being slightly better
thanks to a more e�cient local search. Therefore, a real synergy between the algorithms is
demonstrated.
The hybridization approach yields interesting results, but the determination of the stop-

ping criterion seems to be crucial as well as dependent on the problem. Therefore, its use
as acceleration technique looks tricky in practice. Nevertheless, this strategy seems to pro-
vide a way for re�ning the shape determined by GAs and we recommend its use in this
spirit.

7. APPLICATION TO THREE-DIMENSIONAL DESIGN OPTIMIZATION

Finally, the techniques presented previously are used to perform the optimization of a three-
dimensional wing. The airfoil considered is an extruded NACA 0015 airfoil with a span of
3.3, with a rounded salmon, at an incidence of 8◦. The Reynolds number is Re=2× 106,
the turbulence modelling being achieved by the near-wall SST k–! model of Menter. An
unstructured mesh is employed, the airfoil skin being mapped with about 14 000 triangles
(Figure 12). This skin grid is extruded using prismatic volumes to ful�ll the criterion y+ =1
for viscous �ows, tetrahedral volumes being used far away from the wall. The whole mesh
is comprised of about 800 000 volumes. The goal of the optimization is to reduce the in-
tensity of the vortex generated at the salmon by modifying only the airfoil shape close
to this location. More precisely, the maximum of the vorticity modulus |�| in the half
space (D) downwind the wing is chosen as optimization criterion to be
minimized:

f= max
X∈D

(|�(X )|) (16)

This cost function is obviously more complex than lift or drag, used as cost function for the
validations, and one may fear that ANNs accuracy will decrease in such a context. How-
ever, ANNs are only used for ranging purpose during the pre-evaluations, contrary to the
method presented in Reference [8], where they are employed to evaluate sensitivities. There-
fore, highly accurate ANNs approximations are not necessary in the present approach and one
hopes that the overall procedure remains robust, even when the cost function becomes highly
non-linear.
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Figure 12. View of the skin mesh.

Figure 13. Parameterization.

The problem is parameterized by the FFD method. Six control points are moved vertically
during the optimization, located on the succion face at two sections near the salmon, as shown
in Figure 13. All calculations are performed using a multi-block parallelization approach
involving 64 R14000 processors.
Actually, it would be unrealistic to solve this problem using classical GAs, because of

the cost of a single evaluation. For the present calculation, a population of 20 individuals
is considered, evoluting during 23 generations with the probability pc = 0:95 and pm =0:02,
and a binary coding on 24 genes. For the �rst and second generations, all evaluations are
performed by the �ow solver, which represents almost a quarter of the global computational
cost. Then, inexact pre-evaluations are introduced in the calculations. The ANNs are trained
using 10 entries in the database. An attenuation factor of 10 is employed for the evaluations,
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which seems to be a safe value, considering the number of entries used for the training,
according to the previous tests performed. At each generation, four individuals are exactly
evaluated by the �ow solver. At generation 23, one considers that a good approximation of
the optimal design is reached by GAs and an hybridization process is started to re�ne the
design in a few iterations of a deterministic method. The evolution of the cost function during
the whole optimization procedure is shown in Figure 14. A reduction of 12% of the vorticity
modulus is observed. It should be underlined that the use of the deterministic method from
the initial shape would lead to a poor improvement, as depicted in Figure 14, which justi�es
the use of the present more sophisticated approach. The e�orts on the wing are not modi�ed
signi�cantly during the optimization procedure, since the modi�cations of the shape are local.
The drag and the lift are increased of 0.6 and 0.4 per cent respectively.
The �nal shape is characterized by a thin bump along the junction between the wing and

the salmon (Figures 15(a) and 16(a)). One can notice that the �nal shape found by using the
deterministic method alone has a smaller bump and its characteristics are obviously di�erent,
as shown by Figures 15(b) and 16(b). The need of a more sophisticated optimization strategy
is therefore demonstrated for this case.
If one examines the pressure �elds in a vertical plane located just downwind of the wing

(Figures 17 and 18), one may observe a decrease of the low-pressure area at the centre of
the vortex, underlining the reduction of vorticity. The wall streamlines on the wing show a
modi�cation of the convergence line, which is longer for the �nal shape. The process by
which the vorticity is reduced may be easily understood by looking at the total pressure �elds
at a location close to the middle of the chord of length l (Figures 19 and 20). For the initial
shape, the detachment has not yet begun at this location, although for the optimized shape a
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Figure 15. Front view of �nal shapes.

Figure 16. Transversal view of �nal shapes.

Figure 17. Wall streamlines and pressure �eld—initial shape.
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Figure 18. Wall streamlines and pressure �eld—�nal shape.

Figure 19. Total pressure �eld at x=l=0:7—initial shape.

vortex may be already observed. This comparison shows that the shape modi�cation yields a
detachment upwind. Therefore, the vortex is dissipated earlier and the vorticity downwind of
the wing is consequently reduced.
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Figure 20. Total pressure �eld at x=l=0:7—�nal shape.

8. CONCLUSION

Two acceleration techniques for GAs were evaluated in the particular framework of complex
CFD applications. First, inexact pre-evaluations through ANNs were introduced to reduce
the number of evaluations by the �ow solver at each generation. Actually, one expects to
evaluate through the �ow solver only promising individuals. Then, the hybridization of GAs
was proposed, to reduce the costs needed by the local search, this �nal step being performed
by a deterministic approach. A complex �ow solver, involving RANS computations and near-
wall turbulence modelling, was used for the applications.
The use of ANNs was successfully applied to the optimization of a two-dimensional airfoil,

reducing strongly the CPU time required and maintaining the capacity of GAs to determine
the global optimum. The hybridization provided interesting results as well, but it seemed
relatively tricky to obtain a real acceleration e�ect for practical applications. However, this
strategy is advised to re�ne the shape determined by GAs.
Finally, the complex optimization of a three-dimensional airfoil was studied. Although this

kind of calculations is still expensive, it was shown that it is now possible and realistic to
solve optimization problems with high-�delity CFD codes, using accelerated GAs and then
local shape re�nement by a deterministic approach. These methods are still more expensive
than gradient-based algorithms, but they give the capability of performing a cheap global
exploration �rst, and then an accurate local search of the optimal design. The main limitation
of this approach is related to the low number of design variables used, which is not very
restrictive as long as local shape modi�cations are considered.
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